
Risk-Averse Airline Revenue Management
with Coherent Measures of Risk

Recep Yusuf Bekci



Outline

1. Problem Definition

2. Risk Neutral Model

3. Risk Averse Model

4. Computational Experiments

5. References

1/23



Revenue Management

Definition
Revenue management is the application of disciplined analytics that
predict consumer behaviour at the micro-market level and optimize
product availability and price to maximize revenue growth.

The primary aim of revenue management is selling the right product
to the right customer at the right time for the right price.

2/23



Risk Management

Definition
Risk: A situation involving exposure to danger

For a random variable,

• If it represents cost, risk measures care for higher values

• If it represents revenue, risk measures care for lower values

3/23



Risk Measures

Definition
Coherence: a risk measure satisfying the four axioms of translation
invariance, subadditivity, positive homogeneity, and monotonicity, is
called coherent.

For example, CVaR or Mean Semi-Deviation

4/23



Risk Measures
First-Order Mean Semi-Deviation

For a random variable X that represents cost,

ρ(X) = E[X] + ζE[X − E[X]]+

We are working on revenue, namely reward,

ρ(X) = E[X] − ζE[E[X] − X]+

where 0 ≤ ζ ≤ 1

5/23



Risk Neutral Model
Aydın et al. (2013)

0 1 2 KK-1K-2

We need to divide the time horizon into discrete periods.

6/23



Risk Neutral Model

k

c(k) p (k)

p (k)i

0

In each period, there can be three
events:

• pi(k) is the probability of a
request for a seat in class i.

• c(k) is the probability of
cancellation.

• p0(k) is the probability of a
null event.

7/23



Risk Neutral Model

If a request is accepted for class i at a stage, ri ≥ 0 is the amount of
earned revenue.

We have
m∑︁
i=1

pi(k) + p0(k) = 1 for all k ≥ 1.

8/23



Risk Neutral Model

We also have no-shows. Each customer has a probability βs of
show-up at the departure time. n is the state.

Definition
θ : Overbooking cost.

We have total capacity as C

Definition
κ : Cancellation cost

9/23



Risk Neutral Model
Definition
Jk(n) is the maximum expected revenue over periods 1 to k.

At period K,

JK(n) = −κnc(k) − θE
[︀
B(n, bs(1− c(k))) − C

]︀
+

We have recursive function as

Jk(n) = −κnc(k) + p0(k)Jk+1(B(n, 1− c(k)))+

m∑︁
n=1

pi(k)E
[︀
max

(︀
r(i) + Jk+1(B(n, 1− c(k)) + 1),

Jk+1(B(n, 1− c(k)))
)︀]︀

10/23



Risk Averse Model

At period K,

VK(n) = μ − ζ∗ E
[︀
μ + κ(n− t) + θ[s− C]+

]︀
+

where 0 ≤ ζ ≤ 1, t is the number of customers who did not cancel, s
is the number of customers who show-up and

μ = −κnc(k) − θE
[︀
B(n, βs(1− c(k))) − C

]︀
+

11/23



Risk Averse Model

We have recursive function as

Vk(n) = μ − ζ∗ E
[︀ m∑︁
i=0

pi(k)
(︀
μ + κ(n− t)−

max(r(i) + Vk+1(t+ 1),Vk+1(t))
)︀]︀
+

where 0 ≤ ζ ≤ 1, t is the number of customers who did not cancel
and

μ = −κnc(k) + p0(k)Vk+1(B(n, 1− c(k)))+
m∑︁
i=1

pi(k)E
[︀
max

(︀
r(i) + Vk+1(B(n, 1− c(k)) + 1),

Vk+1(B(n, 1− c(k)))
)︀]︀

12/23



Computational Experiments
Parameter Setup

C = 2 # capacity of the plane
K = 7 # number of periods
kappa = 3 # fixed return of cancellation
beta_s = 0.95 # show-up probability
m = 2 # number of classes
r = np.array([5, 10]) # price of a fare class i ticket
theta = 12 # denied boarding (overbooking cost)

def set_values_accordingly(K):
global c, p0, p
c = np.linspace(0.01, 0.05, K+2)
p0 = np.linspace(0.2, 0.1, K+2)
p = np.array([p0.tolist(), ((1 - p0) / 2).tolist(), ((1 - p0)

/ 2).tolist()]) # we have two classes with equal
# request probablitities

13/23



Computational Experiments
0 Cancellation

14/23



Computational Experiments
1 Cancellation

15/23



Computational Experiments
4 Cancellation

16/23



Computational Experiments
A Different Parameter Setup

C = 2 # capacity of the plane
K = 7 # number of periods
kappa = 4.5 # fixed return of cancellation
beta_s = 0.7 # show-up probability
m = 2 # number of classes
r = np.array([5, 10]) # price of a fare class i ticket
theta = 12 # denied boarding (overbooking cost)

def set_values_accordingly(K):
global c, p0, p
c = np.linspace(0.01, 0.05, K+2)
p0 = np.linspace(0.2, 0.1, K+2)
p = np.array([p0.tolist(), ((1 - p0) / 2).tolist(), ((1 - p0)

/ 2).tolist()]) # we have two classes with equal
# request probablitities

17/23



Computational Experiments
0 Cancellation

18/23



Computational Experiments
A Different Parameter Setup

C = 2 # capacity of the plane
K = 7 # number of periods
kappa = 4.5 # fixed return of cancellation
beta_s = 0.7 # show-up probability
m = 2 # number of classes
r = np.array([5, 10]) # price of a fare class i ticket
theta = 14 # denied boarding (overbooking cost)

def set_values_accordingly(K):
global c, p0, p
c = np.linspace(0.1, 0.15, K+2)
p0 = np.linspace(0.2, 0.1, K+2)
p = np.array([p0.tolist(), ((1 - p0) / 2).tolist(), ((1 - p0)

/ 2).tolist()]) # we have two classes with equal
# request probablitities

19/23



Computational Experiments
0 Cancellation

20/23



References I

[1] M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their
Applications. Academic Press, San Diego, California, 1994.

[2] Lippman, Steven A., and Shaler Stidham Jr. "Individual versus
social optimization in exponential congestion systems."
Operations Research 25.2 (1977): 233-247.

[3] Subramanian, Janakiram, Shaler Stidham, and Conrad J.
Lautenbacher. "Airline Yield Management with Overbooking,
Cancellations, and No-Shows." Transportation Science 33.2 (1999):
147-67.

[4] Aydın, Nurşen, S. Ilker Birbil, J. B. G. Frenk, and Nilay Noyan.
"Single-Leg Airline Revenue Management with Overbooking."
Transportation Science 47.4 (2013): 560-83.

21/23



References II

[5] Artzner, Philippe, F. Delbaen, J.M. Eber and D. Heath. "Coherent
Measures of Risk.", Mathematical Finance 9.4 (1999): 203-228.

22/23



Thank you for listening.

23/23



Appendix
Function of Model

def mo_ra_dyn(x, y):
@memoize
def V(k, n):

if k == K:
mu = -kappa*n*c[k] - theta*binom(n, beta_s*(1-c[k

])).expect(func=lambda x: [max(0, i-C) for i
in x])

ret = mu - zeta*binom(n, c[k]).expect(func=lambda
x: [binom(n-z, beta_s).expect(func=lambda y:
[max(0, mu +kappa*z+theta*max(0, t-C)) for t
in y]) for z in x])

24/23



Appendix
Function of Model

elif k<K:
mu = -kappa*n*c[k] + p[0, k]*binom(n, 1-c[k]).

expect(func=lambda x: [V(k, j) for j in x]) +
sum(p[i, k]*binom(n, 1-c[k]).expect(func=

lambda x: [max(r_[i]+V(k, j+1), V(k, j)) for
j in x]) for i in range(1, m+1))

ret = mu - zeta*binom(n, 1-c[k]).expect(func=
lambda x: [sum(p[i, k]*max(0, mu+kappa*(n-t)
-max(r_[i]+V(k, t+1), V(k, t))) for i in
range(0, m+1)) for t in x] )

return ret

return V(x, y)

25/23



Appendix
Retrieving Decision Matrix

for n in range(K):
for t in range(1, K):

for i in range(n+1):
decision_matrix [n][t-1][i] = decide([r_[1]+

mo_ra_dyn(t+1, n+1-i), mo_ra_dyn(t+1, n-i)])

26/23



Appendix
Calculation of Probability and Rewards in Last Node

def f(t, n, pro, rev):
if t == K:

for i in range(n+1):
for s in range(n-i+1):

rev_ = rev - kappa*i - theta*max(0, s-C)
pro_ = pro*binom(n, c[t+1]).pmf(i)*binom(n-i,

beta_s).pmf(s)
table.append([pro_, rev_])

27/23



Appendix
Calculation of Probability and Rewards in Last Node

if t < K:
#p0
for i in range(n+1):

f(t+1, n-i, pro*p[0, t+1]*binom(n, c[t+1]).pmf(i)
, rev-kappa*i)

#p1
for i in range(n+1):

if decision_matrix[n][t-1][i] == "accept":
f(t+1, n-i+1, pro*p[1, t+1]*binom(n, c[t+1]).

pmf(i), rev+r_[1]-kappa*i)
elif decision_matrix[n][t-1][i] == "reject":

f(t+1, n-i, pro*p[1, t+1]*binom(n, c[t+1]).
pmf(i), rev-kappa*i)

28/23



Appendix
Calculation of Probability and Rewards in Last Node

#p2
for i in range(n+1):

if decision_matrix_2[n][t-1][i] == "accept":
f(t+1, n-i+1, pro*p[2, t+1]*binom(n, c[t+1]).

pmf(i), rev+r_[2]-kappa*i)
elif decision_matrix_2[n][t-1][i] == "reject":

f(t+1, n-i, pro*p[2, t+1]*binom(n, c[t+1]).
pmf(i), rev-kappa*i)

29/23


	Problem Definition
	Risk Neutral Model
	Risk Averse Model
	Computational Experiments
	References
	Appendix

