

Risk-Averse Airline Revenue Management with Coherent Measures of Risk

Recep Yusuf Bekci

Proposal

Outline

- 1. Problem Definition
- 2. Risk Neutral Model
- 3. Risk Averse Model
- 4. References

Revenue Management

- Airline Industry
- Overbooking
- No-shows

We need to divide the time horizon into discrete periods.

In each period, there can be three events:

- *p*_{ni} is the probability of a request for a seat in class *i*.
- *q_n* is the probability of cancellation.
- *p*_{On} is the probability of a null event.

If a request is accepted for class *i* at stage *n*, $r_{in} \ge 0$ is the amount of earned revenue.

We have

$$\sum_{i=1}^{m} p_{ni} + q_n + p_{0n} = 1 \quad \text{for all } n \ge 1$$

We also have no-shows. Each customer has a probability β of no-show at the departure time. *x* is the state.

Definition

Y(x) : number of customers show up at stage 0.

 $Y(x) \sim Binomial(x, 1-\beta)$. Let Y(x) = y at the time of departure.

Definition

 $\pi(y)$: overbooking penalty function.

Definition

 $U_n(x)$ is the maximum expected revenue over periods *n* to 0.

At period 0,

$$U_0(x) = E[-\pi(Y(x))], \quad 0 \le x < N$$

We have recursive function as

$$U_{n}(x) = \sum_{i=1}^{m} p_{in}max\{r_{in} + U_{n-1}(x+1), U_{n-1}(x)\}$$
$$+ q_{n}U_{n-1}(x-1) + p_{0n}U_{n-1}(x)$$

In order to define a control limit policy we need to show that $U_n(x) - U_n(x + 1)$ is nondecreasing in x = 0, 1, ..., N - n - 1.

We use the following lemmas.

Lemma 1 Let f(y), $y \ge 0$, be a nondecreasing convex function. For each non-negative integer x, let Y(x) be a binomial (x, γ) random variable $(0 < \gamma < 1)$ and let h(x) = E[f(Y(x))]. Then h(x) is nondecreasing convex in $x \in \{0, 1, ...\}$.

Lemma 1 has been proved by Shaked and Shanthikumar (1994).

Lemma 2 Let $p_{0n} = \bar{q}_n - q_n$ where \bar{q}_n stands for $1 - \sum_{i=1}^m p_{in}$. Let $H(x) = q_n U_{n-1}(x-1) + (\bar{q} - q_n)U_{n-1}(x)$. If $U_n(x)$ is a nonincreasing concave function in x then H(x) is a nonincreasing concave function in x.

Lemma 3 Let $r_{in} \ge 0$ is fixed and $g(x) = max\{r_{in} + U_{n-1}(x+1), U_{n-1}(x)\}$. If $U_{n-1}(x)$ is concave and nonincreasing, then g(x) is concave and nonincreasing.

Lemma 2 and Lemma 3 have been proved by Lippman and Stidham (1977).

 $U_n(x) - U_n(x + 1)$ can be seen as opportunity cost of accepting a request at stage n + 1. Let b_{in} be the booking limit at stage n and class *i*. It is defined as,

 $b_{in} := \min\{x : U_{n-1}(x) - U_{n-1}(x+1) > r_{in}\}$

After all, our booking limit policy is the following,

accept a request for fare class *i* in state *x* at stage *n* $\Leftrightarrow 0 \le x < b_{in}$.

• We will show whether a control limit policy exists for risk-averse model with coherent measures of risk.

Risk Averse Model

Let $\rho(\cdot)$ be a coherent risk measure. Using first order mean semi-deviation representation as the coherent risk measure we have following dynamic programming equations.

$$V_0(x) = \mathbb{E}[-\pi(Y(x))] - \kappa \mathbb{E}\left[\mathbb{E}[-\pi(Y(x))] + \pi(Y(x))\right]_{\perp}$$

$$V_n(x) = \mu_n - \kappa \left[\sum_{i=1}^m p_{ni} \left[\mu_n - \max\{V_{n-1}(x+1) + r_{in}, V_{n-1}(x)\} \right]_+ \right]$$

$$+q_{n}[\mu_{n}-V_{n-1}(x-1)]_{+}+p_{0n}[\mu_{n}-V_{n-1}(x)]_{+}$$

Risk Averse Model

Where;

• $\kappa \in [0, 1]$ • $\mu_n = \sum_{i=1}^m p_{ni}max\{V_{n-1}(x+1) + r_{in}, V_{n-1}(x)\}$ + $q_n V_{n-1}(x-1) + p_{0n} V_{n-1}(x)$

Risk Averse Model Dual Representation

It is very hard to show that $V_n(x)$ is concave and nonincreasing. So, we will use the dual representation.

Let Y be a random reward. Then, dual representation of $\rho(\cdot)$ is

 $\rho(Y) = \min_{\eta \in A} \mathbb{E}_{\eta}[Y]$

(Artzner et al. (1999))

Risk Averse Model Dual Representation

Then, dual representation of mean semi-deviation,

$$V_0(x) = \min_{\eta \in A_0} \mathbb{E}_{\eta}[-\pi(Y(x))]$$

$$V_n(x) = \min_{\eta \in A_n} \sum_{i=1}^m \eta_i \max\{V_{n-1}(x+1) + r_{in}, V_{n-1}(x)\}$$

 $+\eta_{m+1}V_{n-1}(x-1) + \eta_{m+2}V_{n-1}(x)$

References I

- [1] M. Shaked AND J. G. Shanthikumar, Stochastic Orders and Their Applications. Academic Press, San Diego, California, 1994.
- [2] Lippman, Steven A., and Shaler Stidham Jr. "Individual versus social optimization in exponential congestion systems." Operations Research 25.2 (1977): 233-247.
- [3] Subramanian, Janakiram, Shaler Stidham, and Conrad J.
 Lautenbacher. "Airline Yield Management with Overbooking, Cancellations, and No-Shows." Transportation Science 33.2 (1999): 147-67.
- [4] Aydın, Nurşen, S. Ilker Birbil, J. B. G. Frenk, and Nilay Noyan.
 "Single-Leg Airline Revenue Management with Overbooking." Transportation Science 47.4 (2013): 560-83.

[5] Artzner, Philippe, F. Delbaen, J.M. Eber and D. Heath. "Coherent Measures of Risk.", Mathematical Finance 9.4 (1999): 203-228.